
� elektor electronics - 7-8/2007

PIC12C508 Stepper Motor Controller
C. Tavernier

www.tavernier-c.com

When we’re not using a stepper
motor to ensure precise positioning of
a robot element, it can be used as a
traction motor, in place of the stand-
ard modified servos presented else-
where in this issue. Under these con-
ditions, there’s no longer any need
to ‘count the steps’ the motor has to
make, as all we want is to make it
rotate continuously in one direction
or the other.
Several solutions are open to us for
driving the motor, a number of which
are presented in this issue: using
a specialized stepper motor driver
IC, using one or more suitably-pro-
grammed microcontroller paral-
lel ports, or building a driver based
around conventional logic ICs.
However, these solutions are far from
satisfactory when using a stepper motor
for traction. They all require pulses to be
generated continuously for as long as we
want the motor to run, either requiring
an additional programmable oscillator, or
using up resources from the robot’s main
microcontroller.
So we’ve decided to suggest another
approach with this stepper motor
driver specifically designed for mak-
ing the motor turn in one direction or
another, under the control of a sim-
ple logic level. And as the propul-
sion motors in robots usually go in
pairs, we’re even going to offer a dual
driver, by diverting a very common
and inexpensive IC from its original
function.
Since a stepper motor used for pro-
pulsion doesn’t need to be accurate
in terms of positioning, and hence, in
the precision of the steps, simple sin-
gle-pole models are eminently suit-
able. So, our circuit is designed for
motors of this type.
This lets us control the motor via
two TTL- or CMOS-compatible logic
inputs. When these two inputs,
labelled L and R, are logic high or
floating (they have their own pull-
up resistors), the motor stays still,
but in braked mode, since it’s a
stepper motor. When the L input is
taken to logic low, the motor rotates
in one direction (arbitrarily, to the
left, whence the label L) while if
the R input is taken low, it turns the
other way. If both inputs are taken

to ground at the same time, the R input
has priority, and so the motor turns in that
direction.
The motor’s speed of rotation is fixed, but,
since we are giving you the source listing
of the software used for this application,
it’s very easy for you to modify this if it

doesn’t suit you, or indeed even to
include the possibility of external
adjustment if necessary.
The circuit of the ‘intelligent’ part of
our controller is shown in Figure 1,
as you can see it uses a PIC12C508
microcontroller from Microchip. Used
here in internal clock and reset circuit
mode, it needs no external compo-
nents for these functions, so all its
port lines are available.
Parallel ports GP2 and GP3 are used
as inputs, and as GP2 does not have
an internal pull-up resistor, this is
performed by R1. Parallel ports GP0,
GP1, GP4, and GP5 are used as out-
puts for generating the pulses for the
motor windings. These can be ampli-
fied by two types of power stages,
depending on the type and number
of motors to be driven; we’ll take a
look at those circuits in a moment.
The 12C508 needs to be powered

from 5 V, derived from the motor supply
by means of a conventional 3-terminal
voltage regulator IC2.
If the controller is only intended for a sin-
gle motor, or if the motor to be driven
draws more than 500 mA per winding,
the power stage shown in Figure 2 can be

used. It employs conventional bipolar
transistors that, given their character-
istics, are able to switch currents of
3 A. Diodes D1–D8 clip the spuri-
ous spikes generated by the abrupt
switching of the current in the motor
windings and protect the transistors.
However, if the motor used draws less
than 500 mA, and more importantly,
if you need to drive two motors of
this type, an elegant and ingenious
solution exists, as shown in Figure 3.
This uses a standard ULN2803, usu-
ally used to drive relays, but which
includes eight medium-power Dar-
lingtons along with their protection
diodes. So, this IC is able to properly
drive any kind of single-pole stepper
motor, as long as the voltage required
doesn’t exceed 50 V and the current
per winding is under 500 mA.
In addition, as the ULN2803 contains
eight identical stages, it can be pre-
ceded by two controllers like the one
in Figure 1 and in this way drive two
robot propulsion motors: one on the
left and one on the right, marked MA
and MB in this figure.
Constructing one or other of these
versions is very straightforward. The
PIC 12C508 needs to be programmed
with the file that you’ll find in object

IC2

7805

C1

10n

C3

220n

C4

470µ
25V

C2

47µ
16V

GP5/OSC1

GP3/MCLR

GP4/OSC2

GP2/T0CK

12C508

IC1

GP0

GP1

7

1

8

3

5

6

2

4

R1

10
k

GP0

GP1

GP4

GP5

L
R

070302 - 11

+U

R1

1k

R2

1k

T4

BD679
T3

BD679

D1

D2

M1 M

D8

D7

R3

1k

R4

1k

T2

BD679
T1

BD679

D3

D4

D6

D5

+U
L1L2

L3 L4

+U

GP0

GP1

GP4

GP5

D1...D8 = 1N4004

070302 - 12

M

1

2

�7-8/2007 - elektor electronics

form, as well as in source form, in case
you’d like to modify it, on the Elektor web-
site, as well as on the author’s own site
(www.tavernier-c.com).
If you build the transistor power amplifier,
note that T1–T4 don’t need a heatsink as
long as the motor consumption doesn’t
exceed 1 A. Otherwise, bolt them onto a

small aluminium
plate a few cm2. To
simplify mechani-
cal construction,
it can be common
to the four tran-
sistors, but in this
case you’ll need
to use the standard
insulating accesso-
ries of mica wash-
ers and shoul-
dered washers, as
the collectors of
these transistors
are connected to
the metal parts of
their cases.
If you construct
t he ULN2803-
based ver sion,
there are no spe-
cial precautions
to be observed,
other than to not

exceed the IC’s maximum current capac-
ity of 500 mA.
As we are providing you with the full
source listing of the software programmed
into the 12C508, you’ll be able to modify
it to suit your needs. If you are unfamiliar
with PIC microcontroller assembler, here
are the details you’ll need for the most

important modification you might want
to make: changing the speed of the con-
trol pulses to the motors, and thus, their
speed of rotation. The control word may
be found in Table 1.
To do this, all you have to do is modify the
binary constant on the line:

MOVLW B’10010101’

just above the line containing OPTION in
the source listing. With the original value,
the duration of one step is 8 ms, but the
table above indicates what constant to use
according to the step duration that you
may want.

(070302-I)

Table 1. Programming step duration
by modifying a constant used in the
program.

Binary Step
constant

duration

10010010 1 ms

10010011 2 ms

10010100 4 ms

10010101 8 ms

10010110 16 ms

10010111 32 ms

MA M

MB M

GP0A

GP1A

GP4A

GP5A

GP0B

GP1B

GP4B

GP5B

L1L2

L3 L4

L5L6

L7 L8

ULN2803

IC1

VEE

11

12

13

14

15

16

17

18
I1

I2

I3

I4

I5

I6

I7

I8

O1

O2

O3

O4

O5

O6

O7

O8

10

1

2

3

6

7

8

4

5

9

070302 - 13

+U M

+U
3

